

U.S. Department of Transportation Federal Aviation Administration

# Enhanced Noise Abatement Climb Final Report

Continuous Lower Energy, Emissions and Noise (CLEEN) Program

Submitted by General Electric

DOT/FAA/AEE/2014-05





The Continuous Lower Energy, Emissions and Noise (CLEEN) Program is a Federal Aviation Administration NextGen effort to accelerate development of environmentally promising aircraft technologies and sustainable alternative fuels. The CLEEN Program is managed by the FAA's Office of Environment and Energy.

The report presented herein is the final report deliverable submitted by General Electric for a project conducted under the CLEEN Program to develop FMS (Flight Management System) algorithms to enhance noise abatement climb procedures. This project was conducted under FAA other transaction agreement (OTA) DTFAWA-10-C-00046. This is report is report number DOT/FAA/AEE/2014-05 by the FAA's Office of Environment and Energy.

## CLEEN Enhanced Noise Abatement Climb Procedure Benefits Analysis

Prepared by:

**GE Aviation Systems LLC** 3290 Patterson Avenue, SE, Grand Rapids, MI 49512-1991, USA

© 2013 GE Aviation Systems LLC, USA



# **Table of Contents**

| 1      | Summary                                 | 3  |
|--------|-----------------------------------------|----|
| 2      | Introduction                            |    |
| 3      | Enhancements                            |    |
| 3.1    | Noise Abatement Locations and Altitudes | 4  |
| 3.2    | Required Noise Factor                   | 4  |
| 4      | Interfaces                              |    |
| 4.1    | MCDU Pages                              | 5  |
| 4.2    | EFIS Display                            | 5  |
| 5      | Benefits Analysis                       | 6  |
| 5.1    | Fuel                                    | 8  |
| 5.1.1  | No Cutback or Restore Points            |    |
| 5.1.2  | Early Cutback and Late Restore Points   |    |
| 5.1.3  | Early Cutback and Early Restore Points  |    |
| 5.1.4  | Late Cutback and Late Restore Points    |    |
| 5.1.5  | Late Cutback and Early Restore Points   | 9  |
| 5.2    | Noise                                   | 9  |
| 6      | Conclusion                              | 11 |
| Append | dix                                     | 12 |

# Table of Figures

| Figure 1 – Benefit of location based noise abatement | .3 |
|------------------------------------------------------|----|
| Figure 2 – Altitude and Location Based Quiet Climb   |    |
| Figure 3 - MCDU                                      |    |
| Figure 4 – EFIS Display                              |    |
| Figure 6 – BAYMED Departure Procedure                |    |

## 1 Summary

An enhanced procedure for climb noise abatement utilizing both an altitude- and location-based method to reduce noise surrounding airports while maximizing climb thrust was analyzed. Increased climb thrust allows an aircraft to reach cruise altitude earlier resulting in decreased fuel usage due to operation at higher altitudes. Several general takeoff/climb trajectories using various altitude and location noise reduction methods are compared from both a fuel and noise perspective.

Overall, the analysis found that using more advanced noise abatement departure procedures resulted in an average fuel savings of ~60 pounds per flight while having little to no negative effects on the noise profile for the majority of the test scenarios.

## 2 Introduction

Noise levels surrounding airports present a unique problem for both the communities surrounding the airport and the airline operators. The communities would like to see a reduction in noise while the airline operators want to climb out more quickly to take advantage of greater efficiencies realized at higher altitudes. Current methods for reducing noise employ an altitude-based scheme where the thrust is changed from takeoff to a reduced climb setting once the aircraft climbs above a predetermined altitude. The throttles are then returned to the normal climb thrust setting once the aircraft climbs above a second, higher predetermined altitude. This method helps to reduce noise, but tends to penalize both light and heavy aircraft. The lighter aircraft potentially must reduce thrust earlier than necessary and heavy aircraft may keep the thrust reduced longer than necessary. In 2008, GE and Boeing partnered together to pursue an alternate noise reduction method using location as the driving factor for reducing thrust. This method improves on the altitude-based method by having all aircraft reduce thrust once the noise abatement area is reached regardless of altitude. Figure 1 shows the benefit realized by utilizing this method.

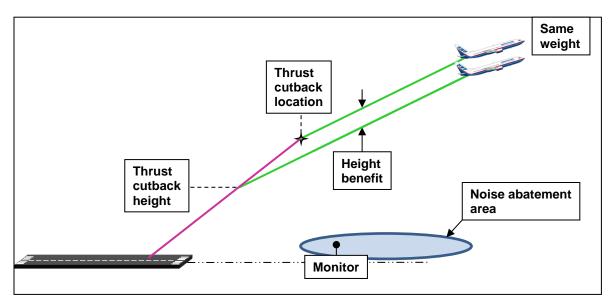



Figure 1 – Benefit of Location-Based Noise Abatement

However, the location-based thrust reduction method also has the shortcoming of the thrust potentially being reduced longer than necessary due to the aircraft having climbed significantly high

above the noise abatement area. The method implemented for the CLEEN program incorporates both the altitude- and location-based methods into an integrated scheme where thrust is only reduced when necessary based on distance from the noise area both horizontally and vertically. These noise areas can be customized for particular airports and do not need to impact current departure routes. The intersection between an airlines planned departure and the specified noise area(s) serves as the criteria for noise abatement thrust settings.

## 3 Enhancements

## 3.1 Noise Abatement Locations and Altitudes

While methods for using either a set of altitudes or locations to determine thrust reduction and restore points have been explored previously, combining the two methods together to the least constraining factor produces a flexible solution that helps to both reduce noise and maximize climb performance resulting in decreased cruise fuel usage. Figure 2 illustrates how the application of altitude- and location-based thrust reduction affects several vertical flight profiles.

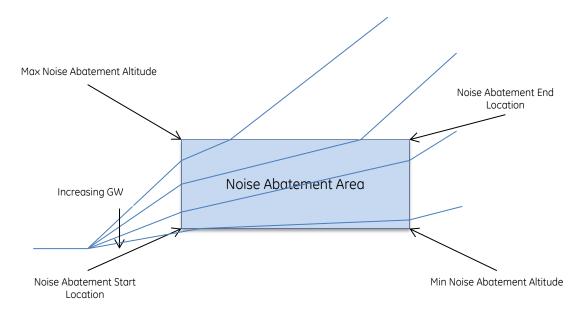
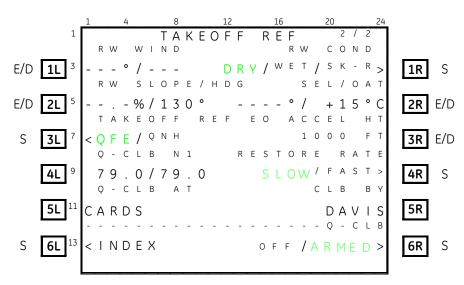



Figure 2 – Altitude- and Location-Based Quiet Climb

As seen in Figure 2, thrust is reduced from takeoff to a derated climb setting once both the minimum noise abatement altitude and the noise abatement start location are reached. A reduced thrust setting is maintained until either the maximum noise abatement altitude or the noise abatement end location is reached.

## 3.2 Required Noise Factor


In addition to specifying the start and end noise abatement locations, the 2008 demo included the ability to choose between a FAST or SLOW setting for applying normal climb thrust. The FAST (discrete) setting would reduce thrust immediately upon sequencing the noise start location, then reapply the normal climb setting upon exiting the noise area. The SLOW (ramped) setting would

immediately reduce thrust upon entering the noise area with a subsequent linear ramping applied halfway through the noise area with normal climb thrust being achieved upon exiting the noise area. For CLEEN, this slewing method was retained. For the purposes of this analysis, all test scenarios were run with the FAST slewing method.

## 4 Interfaces

## 4.1 MCDU Pages

The TAKEOFF REF 2/2 page is where most of the noise abatement information is currently located. The display chosen for the 2008 demo was retained for CLEEN (Figure 3). The page displays either the noise altitude values (for altitude-only specified noise abatement) or the noise start and end location identifiers. The altitudes used for the noise- and altitude-based scenarios are located in the loadable performance defaults database.



#### Figure 3 - MCDU

## 4.2 EFIS Display

Similar to the 2008 demo, the beginning (Q-CLB) and end (CLB) of the noise abatement procedure will be displayed on the path (Figure 4). However, the locations are based on improved takeoff predictions with the combination of the altitude and location criteria determining their placement.

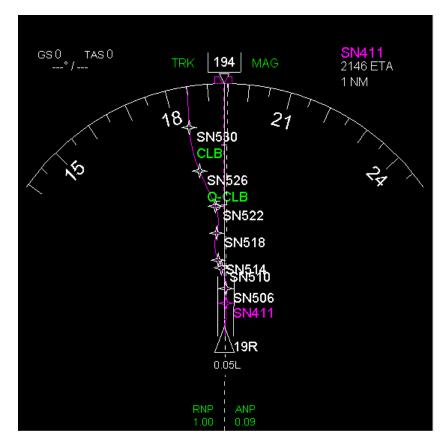



Figure 4 – EFIS Display

For most normal operations, the start location is the displayed Q-CLB point while the CLB point is either the end location or the predicted location where the aircraft climbs above the maximum noise abatement altitude.

The flight trajectories and fuel predictions were generated using a modified version of the GE Aviation Systems U11 Flight Management System designed for the Boeing 737 aircraft. These trajectories were then converted into the ASIF file format for use with the Aviation Environmental Design Tool (AEDT) 2a. The AEDT was then used to simulate the noise produced by the different flight scenarios.

## 5 Benefits Analysis

The benefits analysis was performed based on simulated takeoffs and climbs departing from John Wayne Airport (KSNA) runway 19R. Noise monitoring locations were simulated at the John Wayne Airport 1S through 7S (South) noise monitoring stations as seen in Figure 5. The flight trajectories and fuel predictions were generated using a modified version of the GE Aviation Systems U11 Flight Management System designed for the Boeing 737 aircraft. These trajectories were then converted into the ASIF file format for use with the Aviation Environmental Design Tool (AEDT) 2a. The AEDT was then used to simulate the noise produced by the different flight scenarios.




Figure 5 – Noise Monitoring Stations http://www.ocair.com/generalaviation/noiseabatement/NMSMap-02-02-2012.pdf Downloaded: 03/29/2012

This setup was then executed on the following 18 scenarios using the BAYMED departure procedure (Figure 6) with differing cutback and restore locations for different gross weights:

| Case Description              | Start Point | End Point | Gross Weight |
|-------------------------------|-------------|-----------|--------------|
| No cutback or restore         | NA          | NA        | 130 klbs     |
|                               |             |           | 150 klbs     |
| Early cutback – Late restore  | SN506       | SN530     | 130 klbs     |
|                               |             |           | 150 klbs     |
| Early cutback – Early restore | SN510       | SN522     | 130 klbs     |
|                               |             |           | 150 klbs     |
| Late cutback – Late restore   | SN522       | MUSEL     | 130 klbs     |
|                               |             |           | 150 klbs     |
| Late cutback – Early restore  | SN526       | SN530     | 130 klbs     |
|                               |             |           | 150 klbs     |

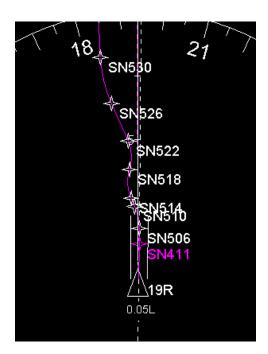



Figure 6 – BAYMED Departure Procedure

## 5.1 Fuel

As a baseline, the fuel at the top of descent for a flight using no quiet climb methods was run. The values for fuel were the highest of all the runs for both the 130 and 150 klbs cases, supporting the idea that faster takeoff/climb outs provide superior fuel performance. Subsequent runs for each case described in Section 5 involved comparing one of the noise abatement departure methods with a more advanced method and comparing the effects on both fuel and noise.

Overall, between all the different runs an average fuel savings of ~60 pounds per flight was achieved by using more advanced noise abatement methods.

#### 5.1.1 No Cutback or Restore Points

| Gross Weight | T/D Fuel   |
|--------------|------------|
| 130 klbs     | 16,389 lbs |
| 150 klbs     | 16,113 lbs |

#### 5.1.2 Early Cutback and Late Restore Points

For this case, the location-only noise abatement method was compared with the more advanced location- and altitude-based noise abatement method. This case simulates the scenario where an aircraft has the climb capability to exit the noise abatement procedure due to altitude instead of waiting until the exit geographical location has been reached.

| Gross Weight | T/D Fuel – Location Only | T/D Fuel – Location and Altitude | Fuel Savings |
|--------------|--------------------------|----------------------------------|--------------|
| 130          | 16,258 lbs               | 16,322 lbs                       | +64 lbs      |
| 150          | 15,928 lbs               | 15,990 lbs                       | +62 lbs      |

#### 5.1.3 Early Cutback and Early Restore Points

For this case, the altitude-only noise abatement method was compared with the more advanced location-only method. This case simulates the scenario where an aircraft leaves the geographic area of concern with respect to noise prior to climbing high enough to satisfy the altitude-based method.

| Gross Weight | T/D Fuel – Altitude Only | T/D Fuel – Location Only | Fuel Savings |
|--------------|--------------------------|--------------------------|--------------|
| 130          | 16,327 lbs               | 16,336 lbs               | +9 lbs       |
| 150          | 15,992 lbs               | 16,018 lbs               | +26 lbs      |

#### 5.1.4 Late Cutback and Late Restore Points

For this case, the location-only noise abatement method was compared with the more advanced location and altitude method. This case simulates the scenario where an aircraft can climb out of the noise abatement area prior to having departed the geographical area of interest.

| Gross Weight | T/D Fuel – Location Only | T/D Fuel – Location and Altitude | Fuel Savings |
|--------------|--------------------------|----------------------------------|--------------|
| 130          | 16,160 lbs               | 16,323 lbs                       | +163 lbs     |
| 150          | 15,841 lbs               | 15,990 lbs                       | +149 lbs     |

#### 5.1.5 Late Cutback and Early Restore Points

For this case, the altitude-only noise abatement method was compared with the more advanced location and altitude method. This case simulates the scenario where an aircraft leaves the geographic area of interest prior to climbing out of the noise abatement area. These particular cases showed a slight savings using the older noise abatement method. However, since the differences are less than 5 pounds of fuel the two trajectories are essentially identical.

| Gross Weight | T/D Fuel – Altitude Only | T/D Fuel – Location and Altitude | Fuel Savings |
|--------------|--------------------------|----------------------------------|--------------|
| 130          | 16,327 lbs               | 16,322 lbs                       | -5 lbs       |
| 150          | 15,992 lbs               | 15,990 lbs                       | -2 lbs       |

## 5.2 Noise

For each scenario presented in paragraph 5.1, the following values were compared to determine the noise increases/reductions between the different noise abatement methods:

- average noise value over the seven monitoring stations
- maximum noise value
- average of the three noise monitoring stations closest to the airport
- average of the four noise monitoring stations furthest from the airport

Overall, 75% of the noise abatement methods resulted in a reduced total average noise value when compared with a full rated takeoff/climb. Additionally, 62.5% of the advanced noise abatement scenarios resulted in superior or negligibly different noise profiles.

#### No Cutback or Restore Points

| Weight | Average Total Noise | Max Noise   | Average 1-3 | Average 4-7 |
|--------|---------------------|-------------|-------------|-------------|
| 130    | 88.8172 dB          | 100.1143 dB | 90.6248 dB  | 87.4615 dB  |
| 150    | 88.8286 dB          | 100.1393 dB | 90.5893 dB  | 87.5082 dB  |

#### Early Cutback and Late Restore Points

Weight = 130 klbs

| Noise Value   | Location Only | Location and Altitude | Noise Difference |
|---------------|---------------|-----------------------|------------------|
| Total Average | 87.3294 dB    | 87.3295 dB            | +0.0001 dB       |
| Maximum       | 100.2247 dB   | 100.2247 dB           | 0.0000 dB        |
| 1-3 Average   | 91.1623 dB    | 91.1623 dB            | 0.0000 dB        |
| 4-7 Average   | 84.4548 dB    | 84.4550 dB            | +0.0002 dB       |

Weight = 150 klbs

| Noise Value   | Location Only | Location and Altitude | Noise Difference |
|---------------|---------------|-----------------------|------------------|
| Total Average | 88.2074 dB    | 88.0358 dB            | -0.1716 dB       |
| Maximum       | 99.1894 dB    | 98.4040 dB            | -0.7854 dB       |
| 1-3 Average   | 90.8035 dB    | 90.4787 dB            | -0.3248 dB       |
| 4-7 Average   | 86.2604 dB    | 86.2037 dB            | -0.0567 dB       |

#### Early Cutback and Early Restore Points

Weight = 130 klbs

| Noise Value   | Altitude Only | Location Only | Noise Difference |
|---------------|---------------|---------------|------------------|
| Total Average | 86.9185 dB    | 88.4859 dB    | +1.5674 dB       |
| Maximum       | 99.8255 dB    | 100.0707 dB   | +0.2452 dB       |
| 1-3 Average   | 90.7237 dB    | 90.5389 dB    | -0.1848 dB       |
| 4-7 Average   | 84.0647 dB    | 86.9462 dB    | +2.8815 dB       |

Weight = 150 klbs

| Noise Value   | Altitude Only | Location Only | Noise Difference |
|---------------|---------------|---------------|------------------|
| Total Average | 87.4880 dB    | 87.8246 dB    | +0.3366 dB       |
| Maximum       | 100.7181 dB   | 98.4063 dB    | -2.3118 dB       |
| 1-3 Average   | 89.5511 dB    | 89.9799 dB    | +0.4288 dB       |
| 4-7 Average   | 85.9408 dB    | 86.2081 dB    | +0.2673 dB       |

#### Late Cutback and Late Restore Points

Weight = 130 klbs

| Noise Value   | Location Only | Location and Altitude | Noise Difference |
|---------------|---------------|-----------------------|------------------|
| Total Average | 89.2852 dB    | 89.2853 dB            | +0.0001 dB       |
| Maximum       | 100.0708 dB   | 100.0708 dB           | 0.0000 dB        |
| 1-3 Average   | 90.5405 dB    | 90.5405 dB            | 0.0000 dB        |
| 4-7 Average   | 88.3438 dB    | 88.3440 dB            | +0.0002 dB       |

#### Weight = 150 klbs

| Noise Value   | Location Only | Location and Altitude | Noise Difference |
|---------------|---------------|-----------------------|------------------|
| Total Average | 88.4921 dB    | 88.3820 dB            | -0.1101 dB       |
| Maximum       | 98.4064 dB    | 98.4064 dB            | 0.0000 dB        |
| 1-3 Average   | 89.9809 dB    | 89.9809 dB            | 0.0000 dB        |
| 4-7 Average   | 87.3756 dB    | 87.1829 dB            | -0.1927 dB       |

#### Late Cutback and Early Restore Points

Weight = 130 klbs

| Noise Value   | Altitude Only | Location and Altitude | Noise Difference |
|---------------|---------------|-----------------------|------------------|
| Total Average | 86.9185 dB    | 89.2857 dB            | +2.3672 dB       |
| Maximum       | 99.8255 dB    | 100.0708 dB           | +0.2453 dB       |
| 1-3 Average   | 90.7237 dB    | 90.5406 dB            | -0.1831 dB       |
| 4-7 Average   | 84.0647 dB    | 88.3446 dB            | +4.2799 dB       |

Weight = 150 klbs

| Noise Value   | Altitude Only | Location and Altitude | Noise Difference |
|---------------|---------------|-----------------------|------------------|
| Total Average | 87.4880 dB    | 88.3824 dB            | +0.4639 dB       |
| Maximum       | 100.7181 dB   | 98.4064 dB            | -2.3117 dB       |
| 1-3 Average   | 89.5511 dB    | 89.9810 dB            | +0.4299 dB       |
| 4-7 Average   | 85.9408 dB    | 87.1835 dB            | +1.2427 dB       |

## 6 Conclusion

Overall, using an enhanced noise abatement departure procedure produced an average fuel savings of ~60 pounds per flight. Though modest, once deployed across a fleet of aircraft, non-trivial fuel savings could be realized. Additionally, these savings are often achieved with little or no increase in noise at the published microphone locations. Application of enhanced noise abatement departure procedures results in fuel saved for the airlines while satisfying the airport and surrounding communities' need to manage the amount of noise produced by departing aircraft.

# Appendix

Noise Data Summary

